Как переделать компьютерный блок питания

Как переделать компьютерный блок питания

Переделка компьютерного блока питания ATX в регулируемый блок питания

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+3,3 В — оранжевый

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками

Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный. Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В. Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.

Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.

ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!

  • рулетка
  • отвертка
  • Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
  • Проволочные защелки
  • Паяльник
  • Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)
  • переключатель
  • 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
  • Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
  • Термоусадка
  • Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).

В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):

  • Клеммные колодки
  • Дрель
  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм
  • Разъемы
  • Зажимы «крокодил»

Шаг 1: Сбор и подготовка блока питания

Предупреждение: ПЕРЕД ТЕМ, КАК НАЧАТЬ, УБЕДИТЕСЬ, ЧТО БЛОК ПИТАНИЯ НЕ ПОДКЛЮЧЕН

Конденсаторы могут ударить током, что довольно больно. Дайте блоку питания полежать в течение нескольких дней, чтобы он разрядился, или подключите резистор на 10 Ом к красному и черному проводу.

Если вы слышите жужжание при включении питания, это означает, что где-то происходит короткое замыкание или другая серьезная проблема. Если вы слышите жужжание (не от паяльника) во время пайки, это означает, что блок питания подключен. Помните, что если блок, который подключен к питанию, отключить кнопкой, в нем все еще останется ток.

Хорошо, давайте вынем блок питания из компьютера. Обычно он крепится на 4 винтах к задней панели корпуса. Выньте провода из отверстия, затем сгруппируйте их по цветам и отрежьте концы.

Кстати, вы только что аннулировали свою гарантию.

Шаг 2: Делаем проводку

Теперь приступим к сложной части, где нужно добавить светодиоды, переключатели и другие подобные детали. Мы имеем много проводов каждого типа, поэтому я рекомендую использовать 2-4 провода. Некоторые люди перебирают все внутри коробки, а я сделал всё снаружи. Это зависит от того, какой метод вы используете на следующем шаге.

Если вы хотите добавить индикатор ожидания или индикатор включения питания, вам понадобится светодиод (рекомендую красный, но не обязательно) и резистор на 330 Ом. Припаяйте черный провод к одному концу резистора, а короткий конец светодиода — к другому. Резистор уменьшит напряжение, чтобы не повредить светодиод. Перед пайкой, наденьте небольшой кусок термоусадки, чтобы защитить контакты от короткого замыкания. Припаяйте фиолетовый провод к более длинной ноге, и когда вы подадите питание (не включая блок), светодиод должен загореться.

Для включенного блока питания вы также можете установить другой светодиод (рекомендую зеленый). Некоторые говорят, что нужно использовать серый провод для питания светодиода, но тогда нужен еще один резистор на 330 Ом. Я просто подключил его к оранжевому проводу 3,3 В.

Если вы используете метод с серым проводом:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте серый провод к одному концу резистора, а другой конец резистора — к более длинной ножке светодиода. Черный провод припаяйте к короткой ножке.

При использовании оранжевого провода 3.3В:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте оранжевый провод к более длинной ножке светодиода, а черный провод — к более короткой ножке.

Теперь к переключателю: если на задней стенке вашего блока питания уже есть переключатель, этот пункт вам не сильно пригодится. Подключите зеленый провод к одному контакту на переключателе, а черный — к другому. Если вы не хотите использовать переключатель, просто соедините зеленый и черный провода.

Вы также можете использовать предохранитель на 1А. Всё, что нужно сделать, это обрезать черные провода примерно в середине, и соединить их с предохранителем в держателе.

Некоторым блокам питания нужна нагрузка для правильной работы. Для обеспечения этой нагрузки припаяйте красный провод к одному концу резистора 10 Ом10 Вт и черный провод к другому. Таким образом блок будет думать, что он что-то делает.

Если вы ничего не поняли, загляните в схему, которую я приложил. В ней показан способ подключения проводов. Об этом я расскажу в следующем шаге. Там изображен способ с серым проводом на светодиод (но вы можете использовать оранжевый, как написано выше), а также показывает проводку для высокоомного резистора.

Шаг 3: Пускаем ток!

В учебных пособиях, которые я прочитал, существует множество различных способов подключения разъемов для подключения ваших устройств к питанию. Мы начнем с самого лучшего и дойдем до худшего.

Некоторые учебные пособия расскажут вам, как собрать все детали внутри корпуса, но это опасно и приведет к чрезмерному нагреву и поломкам. Я рекомендую использовать внешний монтаж.

Добавление переменного резистора

Я лично считаю, что это лучший метод, так как он может обеспечить любое напряжение от 1,5 до 24 В. Причина того, что он на 22В, а не 12В, потому что он использует синий провод, который имеет напряжение -12 В, а не обычную землю (черный провод).

  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм

Сначала постройте схему с основного изображения и соедините ваши линии +12 и -12 В. Затем просверлите отверстия в блоке питания или в внешнем корпусе, чтобы установить переменный резистор. Все остальные детали должны находиться внутри. Теперь я предлагаю добавить две клеммных колодки, чтобы вы могли подключать устройства напрямую. Также можно подключить к ним «крокодилы». Когда вы поворачиваете переменный резистор, напряжение должно находиться в диапазоне от 1,5 до 24 В.

ПРИМЕЧАНИЕ. На главном изображении есть опечатка, которую следует учесть: + 24В вместо 22В. Если у вас есть старый вольтметр, вы можете подключить его в цепь, чтобы отслеживать выходящее напряжение.

Разъемы

Теперь нужно установить разъемы для подключения оборудования. Просверлите для них отверстия (обязательно оберните печатную плату в пластик, так как металлические осколки могут закоротить ее), а затем проверьте, подходят ли они по размеру, вставив разъемы и затянув болт. Выберите, какое напряжение должно идти на каждый разъем и сколько разъемов нужно вставить. Обозначения проводов по цветам:

  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3В
  • Черный: Земля
  • Белый: -5В

Выше приведено изображение с использованием метода с разъемами.

Крокодиловые зажимы

Если у вас не так много опыта или у вас нет вышеуказанных деталей, и по какой-то причине вы не можете их купить, вы можете просто подключить любые линии напряжения, которые вы хотите к крокодиловым зажимам. Если вы выбрали этот вариант, я рекомендую использовать изоляцию, чтобы предотвратить КЗ.

Советы и устранение неполадок

  1. Не бойтесь добавлять ингредиенты в коробку: светодиоды, наклейки и т.д.
  2. Убедитесь, что вы используете блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у вас нет данных о проводке, даже не начинайте никаких работ, иначе вы просто сломаете свой блок.
  3. Если светодиод на передней панели не горит, значит ножки подключены неправильно. Просто поменяйте провода местами и он должен загореться.
  4. Некоторые современные блоки питания имеют провод «Сигнал обратной связи стабилизатора», который должен быть подключен к источнику питания для работы блока. Если провод серый, подключите его к оранжевому проводу, если он розовый, подключите его к красному проводу.
  5. Силовой резистор с высокой мощностью может довольно сильно нагреваться; вы можете использовать радиатор, чтобы охладить его, но убедитесь, что он не создает КЗ.
  6. Если вы решили монтировать детали внутрь корпуса, вентилятор можно установить снаружи, чтобы освободить немного места.
  7. Вентилятор может шумно работать, ведь он питается от 12В. Так как это не компьютер, который сильно нагревается, можно обрезать красный провод вентилятора и подключить оранжевый 3,3 В. Следите за температурой после этого. Если она слишком большая, подключите обратно красный провод.

Поздравляю! Вы успешно сделали ваш блок питания.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Блок питания 0-30 В из компьютерного БП ATX

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из того, что было под рукой. Здесь не нужно проектировать плату, вся переделка укладывается на той что в блоке питания.

Начал работу с удаления всех ненужных компонентов, то есть выпаивания диодов, дросселей и конденсаторов на вторичной стороне и всех элементов, связанных с обвязкой контроллера 1, 2, 3, 4, 15, 16, а затем собрал все в соответствии с доработанной схемой.

Схема переделки БП ATX в регулируемый

Представленная схема является модификацией примерной схемы блока питания ATX, поэтому она может немного отличаться, когда речь идет о части, содержащей резервный преобразователь, используемые ключи или значения некоторых элементов, поэтому обозначил элементы на схеме, поместив «xx» рядом с теми, которые должны быть изменены или добавлены.

Блок питания оснащен двумя линейными потенциометрами по 10 кОм, один для регулирования напряжения, другой для ограничения тока. Ток измеряется между центральным отводом трансформатора и землей с помощью измерительного резистора 5 мОм / 2 Вт. Напряжение на измерительном резисторе отрицательно по отношению к массе, поэтому оно поступает на TL494, операционный усилитель LM358 используется только для усиления сигнала от потенциометра регулировки тока. Добавленный 36 кОм резистор на ножке 6 используется только для поднятия частоты инвертора с 30 кГц до примерно 45 кГц — без него блок питания также будет работать.

В первый раз оставил главный трансформатор без изменений, включил источник питания и когда все заработало, перенастроил соединения вторичной обмотки. Эта операция не является необходимой, но тогда максимальное выходное напряжение можно безопасно поднять примерно до 24 В. У трансформатора было 4 вторичных обмотки на каждой стороне 3 витка, соединенных параллельно, и одна 4 витка обмотка, добавленная последовательно. Обмотки были разделены и соединены как на схеме.

Дроссель использовался как есть, вначале удалил из него все ненужные обмотки и оставил только то, что было по линии 12 В. Сердечником дросселя является T106-26, при 30 витках он должен иметь около 83 мкГн и ток насыщения 8,6.

Резервный преобразователь должен оставаться неизменным и содержать все элементы, необходимые для его правильной работы, поэтому его не следует изменять, тут схема составлена в упрощенном виде, лишь обозначено место, откуда должно быть взято питание контроллера и вентилятора. Блок питания был оснащен обычным цифровым модулем вольтметра. Блок работает стабильно, вполне устойчив к коротким замыканиям на выходных клеммах.

Источник питания типа AT также может быть преобразован, должен быть заменен только трансформатор или должны быть добавлены два диода FR107 для питания контроллера отводом 6 витков (3 + 3).

Выполнив выпрямитель из блока питания ATX и убрав режим Standby, преобразовал его в AT, и он также заработал без проблем. Регулирование тока также, даже с закороченными выходными проводами, увеличивает напряжение питания контроллера до примерно 26-29 В.

Источник питания AT от ATX, за исключением резервного преобразователя, отличается только способом подачи питания на контроллер (источник питания берется из выходного выпрямителя перед дросселем) и дополнительными резисторами 330k возбуждения между коллектором и базой главных транзисторов.

Каждый блок питания ATX может быть безопасно адаптирован к напряжению 24 В, не трогая на главный трансформатор. Единственное что нужно сделать, это удалить ненужные линии (в частности, 3,3 В) и подпаять конденсаторы на соответственно более высокое напряжение. Также полезно увеличить частоту инвертора примерно до 40-50 кГц, тогда уменьшается риск насыщения сердечника.

Второй вариант доработки БП

Также добавлю другую проверенную схему.

Недостатком этого решения является использование двух дополнительных диодов и удвоение потерь выпрямителя. После замены резистора вывода 1 TL494 с 24 кОм на 36 кОм, можете снимать примерно до 40 В на выходе.

Ещё приведу фотографии импульсного трансформатора и что с ним делать:

Согласно модификации это должно быть так:

Ш-образные ферриты тут EI33, конечно и с EI28 будет работать, но более 5 A из них не вытянуть.

Что касается родной защиты источников питания AT / ATX, к сожалению большинство из них не имеют защиты от перегрузки по току, единственными средствами защиты являются перенапряжение и пониженное напряжение, а также превышение максимальной мощности, а как мы знаем мощность является произведением тока и напряжения, поэтому если источник питания имеет ограничение 300 Вт и максимум в линии 12 В 10 А, в таком БП до срабатывания защиты, ограничивающей максимальную мощность, произойдёт попытка выдать 25 А, а это приведет к насыщению дросселя и взрыву транзисторов.

Здесь же источник питания переключается в режим регулирования тока при коротком замыкании выхода, и не имеет значения, происходит ли короткое замыкание при низком или максимальном напряжении. Сделан тест — ток транзисторов ограничен коэффициентом трансформации 4 и сглажен на дросселе. Ток мгновенного срабатывания первичной обмотки не должен превышать 2 А, токовый вывод зависит от резистора, поэтому для 100 Ом это будет 1,6 А, для 47 Ом 3,4 А, в любом случае максимальный мгновенный ток силовых транзисторов не должен превышать 6 А.

О переделке такого БП ATX в зарядное можете почитать по ссылке, а нерегулируемый вариант подобного блока питания есть тут.

Зарядное устройство из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

Защита аккумулятора от глубокого разряда

Зарядное устройство из компьютерного блока питания

Программа sPlan Русская версия с библиотеками радиоэлементов

Как подключить вольтметр амперметр

Зарядное устройство из импульсного блока питания

Генератор высокого напряжения из строчника на транзисторе

637 comments on “ Зарядное устройство из компьютерного блока питания ”

  1. Владимир02.11.2021 в 00:24

Я прочитал 2 ваши статьи и не могу понять замыкать 4-ю ногу или отрезать дорожку на 13.14.15, ножке? И удалять резисторы r1 и r2 или только один на который призодит 12в?

  1. Сергей Автор записи 03.11.2021 в 20:42

Я рекомендую Вам переделать БП с замыканием 4 ноги. Это самый простой способ отключения защиты, отрезать дорожку от 4 ноги и соединить ногу с GND. Удалять можно всего один резистор R1, больше 16В в таком случае поднять напряжение не получится. Удаление второго резистора R2 в некоторых (не во всех) БП позволяет поднять напряжение более 20В. Это делать необязательно, но можно. Надо заменить все выходные 16В конденсаторы на 25 или 35 вольтовые. Способ с отрезанием дорожки от 13, 14, 15 я не рекомендую, надо хорошо разбираться в схеме, слишком проблематично.

Я прочитал 2 ваши статьи и не могу понять замыкать 4-ю ногу или отрезать дорожку на 13.14.15, ножке? И удалять резисторы r1 и r2 или только один на который призодит 12в?

  1. Сергей Автор записи 03.11.2021 в 20:41

Я рекомендую Вам переделать БП с замыканием 4 ноги. Это самый простой способ отключения защиты, отрезать дорожку от 4 ноги и соединить ногу с GND. Удалять можно всего один резистор R1, больше 16В в таком случае поднять напряжение не получится. Удаление второго резистора R2 в некоторых (не во всех) БП позволяет поднять напряжение более 20В. Это делать необязательно, но можно. Надо заменить все выходные 16В конденсаторы на 25 или 35 вольтовые. Способ с отрезанием дорожки от 13, 14, 15 я не рекомендую, надо хорошо разбираться в схеме, слишком проблематично.

А 4 ножку пооучается трогать не надо? Один бп у меня походу сгорел все сделал как вы писали закоротил 4-ю ножку нашол 12 вольт на рещисторе выпаял его впаял переменник подключил к тестеру включил бп начал плавно регулировать ток и после 12 вольт ток поднимался аж до 20 вольт но бп сразу после этого сгорел!я взял второй бп сделал все также но ток нерегулируется переменником стоит на 11 вольтах в чем причина?

  1. Сергей Автор записи 03.11.2021 в 20:24

От 4 ноги отрезается дорожка и нога соединяется с GND. Поднимать напряжение более 16В можно, только если заменить все выходные конденсаторы на которых написано 16В на 25 или 35 вольтовые. Блок мог сгореть из-за пробоя выходного конденсатора. Он замкнул, а защиты нет. 4 нога с GND отключает защиту. Во втором блоке похоже изначально была неисправность. Я всегда перед переделкой измеряю выходное напряжение, оно должно быть 12.2В. Если напряжение изначально менее 12В, например 11.8В, даже 11.9В то все с этого блока ничего не получится. Это уже не исправность в блоке.

Сделал все как по инструкции, и остановился на том что выпаяв резисторы, и поставив переменник, выставив его на 28 кОм как и было на снятом. Отрезал дорожку на 13,14,15 ногу. Подключил на выходе мультик там где были 12В. А на выходе стал показывать 5В. С писком-треском в микросхеме. При поворачивании переменника очень плавно реакции нет. Было один раз, при снятии платы из корпуса и поворачивании ручки были большие скачки, и доходило до 19В, но было сразу убавлено, дабы не убить кондеры. для наглядности видио снизу.

АКБ не зарядился после достижения напряжения 14.5 в и снижения тока до -0.15А.Это можно проверить-проверив плотность!Она будет ниже чем 1.27

  1. Сергей Автор записи 26.09.2021 в 20:21

Внутренне сопротивление АКБ снизится только к концу заряда, поэтому в процессе заряда ток будет долгое время держатся в пределах 1.5А. За сутки полностью разряженный АКБ заряжается до полной плотности 1.27.

Как переделать компьютерный блок питания

Источник питания 13,5В/15А из АТ блока питания компьютера

Внимание! Устройство находится под напряжением! Для обеспечения безопасности все работы с блоком питания следует проводить только спустя некоторое время после его отключения от сети переменного тока.

Внимательно изучив все описанные в литературе варианты переделки компьютерных источников питания я пришел к выводу, что все они либо очень трудоемки и требуют больших затрат времени (с перемоткой дросселей и прочих намоточных изделий), либо проводимая модернизация минимальна. Последний вариант часто приводит к проблемам с надежностью и нагрузочной способностью блока питания (БП). С другой стороны, обилие информации по этой теме и множество всевозможных методик модернизации (порой просто неграмотных с технической точки зрения) позволяют выбрать наиболее приемлемый вариант с учетом собственных потребностей и возможностей. Но есть одна проблема – какому варианту модернизации отдать предпочтение, как выбрать БП для модернизации, что от него ждать и как получить приемлемый результат? Данная статья призвана помочь в этом на примере модернизации одного компьютерного БП (см.фото).

Модификация компьютерного БП может быть и не заменит источник питания Вашего КВ трансивера, но зато черезвычайно удобен для питания УКВ радиостанции в домашних условиях, на даче, огороде или как мощный лабораторный БП. На мой взгляд, начинать нужно с выбора блока питания для модернизации и некоторых теоретических моментов. Теоретические моменты заключаются в том, что без модификации вторичного выпрямителя (ВТВ) и для обеспечения надлежащей надежности блока питания получить от него ток более 15А при U вых.=13,5-14,0 В (100% duty cycle) невозможно. Как может быть осуществлена та самая модификация ВТВ очень хорошо рассказано в статье DL2YEO/UA9LAQ (www.cqham.ru/bppk.htm). Если есть выбор, то предпочтение нужно отдать старым блокам 200-250W, имеющим хоть какой то запас по мощности. Ориентиром тут могут служить габаритные размеры самого большого трансформатора на плате (см. фото) и вес. У относительно современных БП (особенно безымянных или сделанных в Корее) заявленная мощность как правило завышена и получить достойный результат очень сложно. Наличие сетевого фильтра желательно (на фото — левый нижний угол), но не обязательно. Кстати, наличие этого фильтра – косвенный показатель качества БП. Хорошо, если перед покупкой в магазине БП разрешат вскрыть, а если нет? В большинстве случаев этот фильтр можно увидеть ничего не вскрывая. Конструктивно он располагается сразу за вентилятором. Его можно сделать и самому, ничего сложного тут нет. Один из вариантов изготовления сетевого фильтра рассмотрен в статье UA3DJG (www.cqham.ru/pow34.htm). Обратите внимание на транзисторы, установленные в БП. Самый лучший вариант – наличие в нем пары полевых транзисторов. Они значительно меньше нагреваются, хотя и биполярная пара транзисторов 2SC2335 в БП на фото (левый радиатор) тоже неплохо работает.

Итак, БП теперь дома, с чего начать? Начинать нужно с генеральной чистки БП, за многие годы его эксплуатации в компьютере туда много чего засосало… После этого демонтируйте все провода с источников (+5В, -5В, -12В), кроме +12В (желтый), GND (общий, черный) и PG (о нем немного позже). Следующий этап – замена выпрямительных диодов источника + 12В (два отдельных диода на радиаторе или диодная сборка). Использовать сборку от 5-вольтового источника нельзя, она предназначена для более низких напряжений. Лучше использовать здесь сборку из двух диодов с барьером Шоттки (меньший нагрев, за счет меньшего падения напряжения). На фотографии в качестве примера приведены такие сборки (40CPQ060 и 30CTQ060) фирмы International Rectifier. На рынке они доступны, стоимость от 30 до 90 рублей, в зависимости от степени жадности продавца. Кроме всего прочего диодные сборки очень удобно монтировать (на том же месте), но при выборе обратите внимание на частоту работы. Большинство сборок китайского производства – низкочастотные (50-60Hz) и в импульсном источнике питания работать не будут! Можно использовать отечественные диоды КД2999 (2 шт.) с любым буквенным индексом. Мне они не понравились — сильно нагреваются даже при минимальной нагрузке (нарвался на перемаркированные, что ли…). Далее экспериментировать не стал и поставил импорт (на фото – справа). Работает замечательно. При этом сборка +5В остается нетронутой.

Далее на печатной плате от 1 вывода микросхемы ШИМ-контроллера TL494 (такая микросхема используется в большинстве АТ БП мощностью 200-250W до 1999 г. выпуска включительно) нужно найти 2 резистора. Одни из них идет на +5В, другой – на землю (см. фото), нужно аккуратно их выпаять. Независимо от конструктивного решения БП и при наличии TL494 (или ее аналогов других производителей) вышеназванные резисторы должны быть обязательно. Теперь припаяйте постоянный резистор номиналом 33К и мощностью 0,25

Вт или 0,5Вт от 1 ножки TL494 на выход +12В (на фото этот резистор помещен в ПВХ трубочку, а сам выход отмечен крестиком). Так мы изменяем приоритет ШИМ-контроллера с +5В на +12В. Теперь при изменении нагрузки от 0 до 15А напряжение будет меняться не более 50-100 мВ. Вместо другого постоянного резистора установите подстроечный резистор на 10К (его хорошо видно на первом фото). Этим резистором можно выставить любое нужное выходное напряжение (12-14В). Теперь к выходу +12В подключите любую небольшую нагрузку

1А (вентилятор, автомобильную лампу, НО ТОЛЬКО НЕ ТРАНСИВЕР. ) и, соблюдая все меры предосторожности, включите БП в сеть переменного тока. Изолированной отверткой и тем подстроечным резистором выставьте нужное Вам выходное напряжение. После этого подключите вольтметр к 1 ножке ШИМ-контроллера. Напряжение относительно общего провода должно быть в районе +2,5 В. Если это так, то все нормально. Если отличается более чем на 20%, нужно увеличить номинал резистора между +12В и 1 ножкой ШИМ-контроллера (то, что спрятано на фотографии в ПВХ изоляцию) и заново подстроить выходное напряжение. Теперь проверьте защиту от КЗ (моментально отключится) и если все нормально работает, то БП можно отключать. Спустя несколько минут проверьте радиаторы: за несколько минут работы они будут холодными или чуть теплыми (без обдува). БП должен работать бесшумно, никакого треска и других артефактов слышно быть не должно.

Следующим этапом идет настройка схемы защиты от перенапряжения. Смысл ее заключается в изменении контроля с +5В на +12В и замене стабилитрона ZD1 на напряжение 15В (или другого, в зависимости от выходного напряжения) с установкой последовательно с ним добавочного сопротивления в 100 Ом. Все это рассмотрено в статье OZ2CPU/UA9LAQ (Переделка компьютерного БП для трансивера) и на этом вопросе я не останавливаюсь подробно. В качестве охлаждения можно использовать тот же самый родной вентилятор от БП, но выгоднее использовать схему терморегулирования из соображений шумности. Схем в интернете в других литературных источниках очень много и найти их не составит никакого труда. Мне очень понравилась схема термореле, предложенная OZ2CPU/UA9LAQ (Переделка компьютерного БП для трансивера) — удобно, просто, не шумит и все работает. Единственный совет – крепить термодатчик именно к радиатору, где расположены диодные сборки, мне субъективно показалось, что они нагреваются больше. В заключении еще два важных момента.

1. В идеале все радиаторы БП необходимо заменить на более качественные. Очень кстати будет дополнительный фильтр. Оставшиеся провода от выхода +12В сложите в пучки и на ферритовом кольце 2000НМ (d=25мм) намотайте 5 витков, а затем уже вместе с общим проводом подключите к выходным клеммам БП. Параллельно этим клеммам подключите конденсатор и желательно — танталовый. Корпус из сплавов алюминия использовать нельзя, т.к они экранируют только электрические поля. Можно использовать родной корпус БП, предварительно придав отверстиям нужную форму для установки разъемов и выключателей или корпус из сплошного листа железа для экранировки магнитных полей.

2. Возвращаемся к выходу PG. Я не знаю, почему его мало кто использует из радиолюбителей в своей практике. На этом выходе после того, как устанавливаются все выходные напряжения БП (около 1 сек), появляется лог.1 TTL уровня. Следовательно, с помощью PG можно реализовать управление, когда нагрузка подключается не сразу после включения источника питания в сеть, а только после того, как установится выходное напряжение. Для этого можно использовать транзисторный ключ и мощное 12-вольтовое автомобильное реле с защитным диодом, подав через токоограничивающий резистор лог.1 с выход на PG на базу транзистора. Можно использовать и тиристорное управление, тут уже – кому как больше нравится. Лично я использую вариант управления на реле. Питается это устройство от тех же 13,5 вольт.

В итоге получился компактный, легкий и недорогой БП, обеспечивающий ток нагрузки до 15А. Эксплуатация такого источника питания совместно с УКВ радиостанцией выявила отсутствие гармоник частоты переключения.

Добавить комментарий