Станок для намотки тороидальных трансформаторов своими руками

Делаем машину для намотки тороидальных катушек на базе Arduino

Всем привет, представляю вам изготовленную мною машину для намотки тороидальных катушек на базе Arduino. Машина автоматически наматывает проволоку и поворачивает тороид. В качестве интерфейса я использовал энкодер и ЖК-экран 16×2. Пользователь может вводить такие параметры, как диаметр катушки, количество оборотов и угол намотки.

В данной статье я расскажу, как построить эту машину и дам подробности её работы.

Комплектующие

Список комплектующих для самостоятельной сборки:

  • Arduino Nano
  • Драйвер шагового двигателя A4988
  • Энкодер
  • ЖК-дисплей 16×2 I2C
  • Шаговый двигатель Nema 17
  • Двигатель на 1000 RPM
  • Ремень
  • L293D
  • Алюминиевый профиль 20 × 20
  • Болты/гайки
  • Лист фанеры 12 мм

Подробности сборки

Намоточное кольцо

Кольцо я изготовил из фанеры 12 мм. Внешний диаметр – 145 мм, внутренний – 122 мм. Имеется углубление длиной 43 мм и глубиной 5 мм для катушки.

В кольце я сделал один разрез и замок для его открывания. Открыв замок, мы размещаем тороидальную катушку внутри кольца.

Также у кольца есть углубление по внешней стороне, 8 мм шириной и 4 мм глубиной, в котором размещается ремень шириной 6 мм.

Катушка

Катушка для медного провода, которую я выточил из нейлонового стержня. Все размеры показаны на картинке.

Материал выбран потому, что нейлон, во-первых, легче алюминия, во-вторых, его легко точить на станке. Кроме того, когда машина работает, он не колеблется так сильно.

Корпус машины

Корпус также сделан из фанеры 12 мм. На нём закреплены три направляющих ролика, расставленные примерно в 120° друг от друга.

Ролики сделаны из подшипников 626Z, гаек и болтов. На них будет вращаться наше деревянное намоточное кольцо.

Верхняя часть кольца откидывается, а после закрытия зажимается при помощи барашковой гайки. Откинув эту часть, мы устанавливаем кольцо внутрь машины. Вернув её на место, нужно прижать к ней ролик так, чтобы он вошёл в бороздку.

Ролики-держатели тороида

Это ролик, вращающий катушку, и одновременно удерживающий её. Я выточил их из нейлонового стержня на моём токарном мини-станке. Все размеры приведены на фото.

Ролики я снабдил поролоновой лентой, она хорошо держит катушку и та не проскальзывает. Важно использовать барашковые гайки для закрепления направляющих – обычные от вибрации откручиваются.

Сверху и снизу каждого ролика я поставил по фланцевому подшипнику.

Крепление шагового двигателя

Так я закрепил шаговый двигатель, NEMA17. Он вращает катушку, что позволяет автоматически наматывать проволоку по всей её окружности и не требует ручного вращения.

Двигатель постоянного тока

Этот мотор вращает намоточное кольцо. Я использовал Orange Jhonson 12v Dc Motor 300 RPM. Вам советую взять мотор на 600 RPM или 1000 RPM.

Ремень имеет 600 мм в длину и 6 мм в ширину. Держатель мотора, крепящийся к алюминиевому профилю, также сделан из фанеры.

Инфракрасный датчик

Я использовал датчик от SeedStudio. Он отправляет сигнал на контакт обработки прерываний Arduino – таким образом Arduino может подсчитывать количество оборотов кольца.

Я закрепил датчик на алюминиевом профиле так, чтобы замок кольца заодно работал и отражающей поверхностью, на которую реагирует датчик.

Данный датчик выдаёт по 2 сигнала за один поворот кольца – когда дерево сменяется металлом, сигнал меняется с низкого напряжения на высокое, а потом наоборот. Обработчик прерываний регистрирует два изменения состояния. Поэтому для подсчёта реального количества поворотов мне пришлось делить количество срабатываний пополам.

Основание аппарата

Основание тоже сделано из фанеры 12 мм, имеет размеры 300х200 мм. Четыре резиновых ножки будут прочно и хорошо держать машину, и помогут избежать ненужной вибрации.

Для установки компонентов я закрепил на основании алюминиевый профиль. Обожаю его за гибкость в использовании. Все компоненты можно легко устанавливать на профиле и двигать вдоль него. Позволяет легко выравнивать компоненты относительно друг друга.

Корпус контроллера

Коробочка распечатана на 3D-принтере, внутрь установлены плата, ЖК-дисплей и энкодер. Корпус придаёт профессиональный вид всему проекту, а также обеспечивает удобную настройку аппарата. Корпус закреплён на основании при помощи металлической скобы.

Схема подключения

Навигация в меню

ЖК-дисплей используется для вывода информации, а энкодер – для ввода.

Первый экран с приветствием.

На втором экране нужно ввести внешний диаметр катушки – аппарат поддерживает катушки разных диаметров.

На третьем экране нужно ввести количество витков.

На четвёртом экране нужно ввести угол покрытия катушки. 360° означает, что катушка будет покрыта проволокой целиком. 720° означает, что катушка будет обмотана проволокой дважды по окружности.

На 5-м экране можно проверить все входные данные пред тем, как запустить машину. Если всё верно, нажимаете на энкодер, и машина стартует.

6-й экран демонстрирует количество витков в реальном времени.

МОТАЙ.ру

Оборудование для намотки трансформаторов

  • ГЛАВНАЯ
  • РАДИАЛ
  • ТОР-2
  • ТОР-3
  • КОНТАКТЫ

Станок тороидальной намотки ТОР-2

Станок тороидальной намотки предназначен для изготовления тороидальных (о-образных) трансформаторов (импульсных, выходных, высоковольтных). Производство трансформаторов один из самых трудоемких процессов изготовления электротехнического оборудования, потому что сделать тороидальный трансформатор без специального моточного оборудования соблюдая параметры намотки очень сложно. Предприятия, изготавливающие электротехническую продукцию, пользуются услугами намотки трансформаторов сторонних фирм, или могут купить свое оборудование для намотки трансформаторов, дросселей, катушек индуктивности. Станок тороидальной намотки со сменными головками, в отличии от другого моточного оборудования позволяет произвести намотку и изолирование трансформаторов для различных электротехнических изделий. Основное применение станка — это намотка трансформаторов, но он может применяться как оборудование для намотки катушек и как оборудование для намотки дроссселей.
Станок ТОР-2 может оснащаться любой из следующих намоточных головок:

  • НГЗ 220 — намоточная головка с зубчатым приводом (намотка трансформаторов толстым проводом),
  • НГБ 220 — намоточная головка с бегунком (намотка трансформаторов тонким проводом),
  • НГР 220 – намоточная головка с ременным приводом (намотка небольших по размеру трансформаторов),
  • НГИ 220 — лентонамоточная головка (изолирование трансформаторов).

Общие технические характеристики на станок тороидальной намотки ТОР-2 с различными намоточными головками:

  1. Габариты: длина — 620 мм, ширина — 550 мм, высота — 1200 мм
  2. Электропитание — 220 В , 50 Гц
  3. Привод намоточной головки — асинхронный двигатель до 1 кВт/ч
  4. Привод сердечника — шаговый двигатель
  5. Вес, не более — 100 кг
  6. Вариант монтажа — напольный
  7. Объем памяти – до 100 программ
  8. Взаимозаменяемые сматывающие устройства: сматывающее устройство для изоленты, инерционное сматывающее устройство — до 25 кг, безинерционное сматывающее устройство
  9. Контроль шага намотки полностью автоматизирован
  10. Контроль реверсивной намотки — автоматический
  11. Ускорение — автоматическое
  12. Замедление — автоматическое
  13. Остановка для отвода — автоматическая
  14. Контроль сектора обмотки — автоматический
  15. Намотка изоленты — автоматическая

Станок тороидальной намотки ТОР-2 с намоточной головкой НГБ 220

  1. Диапазон наматываемых проводов — 0,1 . . . 0,5 мм
  2. Скорость намотки — до 600 об/мин
  3. Диаметр магазина (шпули) — 220 мм
  4. Мах внешний диаметр трансформатора — до 200 мм
  5. Min внутр. диаметр трансформатора — до 15 мм
  6. Высота трансформатора — до 90 мм
Читайте также  Устройство пескоструйного аппарата своими руками

Самодельная техника

Вход на сайт

Последние статьи

  • Самодельный вездеход «Тербуныч»
  • Сварочный аппарат из автомобильного генератора
  • Двигатель УД2
  • Самодельное багги
  • Самодельная гусеница

Самодельный станок для намотки тороидальных трансформаторов

Делаем машину для намотки тороидальных катушек на базе Arduino / Хабр

Перевод с сайта Electric DIY Lab

Всем привет, представляю вам изготовленную мною машину для намотки тороидальных катушек на базе Arduino. Машина автоматически наматывает проволоку и поворачивает тороид. В качестве интерфейса я использовал энкодер и ЖК-экран 16×2. Пользователь может вводить такие параметры, как диаметр катушки, количество оборотов и угол намотки.

В данной статье я расскажу, как построить эту машину и дам подробности её работы.

На видео всё подробно описано – можно посмотреть его или прочесть статью.

Комплектующие

Подробности сборки

Намоточное кольцо

Кольцо я изготовил из фанеры 12 мм. Внешний диаметр – 145 мм, внутренний – 122 мм. Имеется углубление длиной 43 мм и глубиной 5 мм для катушки.

В кольце я сделал один разрез и замок для его открывания. Открыв замок, мы размещаем тороидальную катушку внутри кольца.

Также у кольца есть углубление по внешней стороне, 8 мм шириной и 4 мм глубиной, в котором размещается ремень шириной 6 мм.

Катушка

Катушка для медного провода, которую я выточил из нейлонового стержня. Все размеры показаны на картинке.

Материал выбран потому, что нейлон, во-первых, легче алюминия, во-вторых, его легко точить на станке. Кроме того, когда машина работает, он не колеблется так сильно.

Корпус машины

Корпус также сделан из фанеры 12 мм. На нём закреплены три направляющих ролика, расставленные примерно в 120° друг от друга.

Ролики сделаны из подшипников 626Z, гаек и болтов. На них будет вращаться наше деревянное намоточное кольцо.

Верхняя часть кольца откидывается, а после закрытия зажимается при помощи барашковой гайки. Откинув эту часть, мы устанавливаем кольцо внутрь машины. Вернув её на место, нужно прижать к ней ролик так, чтобы он вошёл в бороздку.

Ролики-держатели тороида

Это ролик, вращающий катушку, и одновременно удерживающий её. Я выточил их из нейлонового стержня на моём токарном мини-станке. Все размеры приведены на фото.

Ролики я снабдил поролоновой лентой, она хорошо держит катушку и та не проскальзывает. Важно использовать барашковые гайки для закрепления направляющих – обычные от вибрации откручиваются.

Сверху и снизу каждого ролика я поставил по фланцевому подшипнику.

Крепление шагового двигателя

Так я закрепил шаговый двигатель, NEMA17. Он вращает катушку, что позволяет автоматически наматывать проволоку по всей её окружности и не требует ручного вращения.

Двигатель постоянного тока

Этот мотор вращает намоточное кольцо. Я использовал Orange Jhonson 12v Dc Motor 300 RPM. Вам советую взять мотор на 600 RPM или 1000 RPM.

Ремень имеет 600 мм в длину и 6 мм в ширину. Держатель мотора, крепящийся к алюминиевому профилю, также сделан из фанеры.

Инфракрасный датчик

Your browser does not support HTML5 video.

Я использовал датчик от SeedStudio. Он отправляет сигнал на контакт обработки прерываний Arduino – таким образом Arduino может подсчитывать количество оборотов кольца.

Я закрепил датчик на алюминиевом профиле так, чтобы замок кольца заодно работал и отражающей поверхностью, на которую реагирует датчик.

Данный датчик выдаёт по 2 сигнала за один поворот кольца – когда дерево сменяется металлом, сигнал меняется с низкого напряжения на высокое, а потом наоборот. Обработчик прерываний регистрирует два изменения состояния. Поэтому для подсчёта реального количества поворотов мне пришлось делить количество срабатываний пополам.

Основание аппарата

Основание тоже сделано из фанеры 12 мм, имеет размеры 300х200 мм. Четыре резиновых ножки будут прочно и хорошо держать машину, и помогут избежать ненужной вибрации.

Для установки компонентов я закрепил на основании алюминиевый профиль. Обожаю его за гибкость в использовании. Все компоненты можно легко устанавливать на профиле и двигать вдоль него. Позволяет легко выравнивать компоненты относительно друг друга.

Корпус контроллера

Коробочка распечатана на 3D-принтере, внутрь установлены плата, ЖК-дисплей и энкодер. Корпус придаёт профессиональный вид всему проекту, а также обеспечивает удобную настройку аппарата. Корпус закреплён на основании при помощи металлической скобы.

Схема подключения

Навигация в меню

Первый экран с приветствием.

На втором экране нужно ввести внешний диаметр катушки – аппарат поддерживает катушки разных диаметров.

На третьем экране нужно ввести количество витков.

На четвёртом экране нужно ввести угол покрытия катушки. 360° означает, что катушка будет покрыта проволокой целиком. 720° означает, что катушка будет обмотана проволокой дважды по окружности.

На 5-м экране можно проверить все входные данные пред тем, как запустить машину. Если всё верно, нажимаете на энкодер, и машина стартует.

6-й экран демонстрирует количество витков в реальном времени.

7-й экран появляется по окончанию работы.

трансформаторная обмоточная машина, трансформаторная обмоточная машина Поставщики и производители на Alibaba.com

машина для намотки трансформатора

754 найденные продукты для

Тип бизнеса Поставщики намоточных машин для трансформаторов в китае ,Автоматическая машина для намотки катушек трансформатора

, автоматическая машина для намотки катушек трансформатора Поставщики и производители на Alibaba.com

автомат для намотки катушек трансформатора

384 найденные продукты для

Тип бизнеса Поставщики автоматов для намотки катушек трансформатора ,

Самодельная моталка тороидов | Hackaday

[eclipsed78], построил автоматическую намотку тороида (Интернет-архив). Барабан раскалывается, чтобы нагружать тороид. Затем на барабан наматывается проволока, как на любую другую катушку. Барабан вращается, когда ползун стягивает проволоку с барабана, вращаясь в тороиде и выходя из него. Боковое натяжение предотвращает провисание проволоки во время работы. Катушка намотки ступенчатая при вращении барабана, чтобы контролировать соотношение витков. [eclipsed78] создал драйвер шагового двигателя из схемы, чтобы он мог управлять двигателями.Вы можете наблюдать за работой намоточного устройства в виде серии видеороликов. Первый из них встроен ниже. Если вам когда-либо приходилось наматывать массивный тороидальный трансформатор, этот проект для вас.

Станок для намотки трансформаторов своими руками

Очень часто при создании электронных самоделок приходится наматывать и перематывать различные трансформаторы и катушки. Хорошим помощником в этом не простом и кропотливом деле, может стать простой в изготовлении и надежный самодельный намоточный станок для импульсных трансформаторов от компьютерных блоков питания и обычных трансформаторов с «Ш» образным магнитопроводом.

Конструкция намоточного станка очень простая в изготовлении, под силу даже начинающему токарю. Станок состоит из вала закрепленного на опоре вращения. С правой стороны имеется ручка для вращения вала. На валу с лева направо одето зажимное устройство, левый и правый конуса для надежного крепления трансформаторов.

На этой картинке изображен чертеж для изготовления намоточного станка своими руками. Станок рассчитан для намотки импульсных трансформаторов от компьютерных блоков питания и «Ш» образных трансформаторов. Если вы собираетесь мотать, что то очень мелкое или слишком крупное тогда вам надо масштабировать чертеж под ваши нужды. Ну, а если вас устраивает размер станка, смело берите чертеж и отправляйтесь к знакомому токарю. -Хороший токарь сделает намоточный станок за три часа… -Пускай делает. Да, и не забудьте прихватить с собой токарной валюты. Всякий труд должен оплачиваться.

Читайте также  Картофельная копалка для мотоблока своими руками

Чертеж намоточного станка для намотки импульсных трансформаторов

Станок оснащен электронным счетчиком оборотов. Который я приобрел в очень известном китайском интернет магазине всего за 7.5$. Пожалуй это не дорого… За эти деньги счетчик комплектуется герконовым датчиком, крепежной пластиной для герконового датчика и маленьким неодимовым магнитом! На передней панели счетчика находится две овальные кнопки. Левая кнопка «Pause» включает прибор и сохраняет показания счетчика, кнопка «Reset» обнуляет показания прибора. Прибор питается всего от одной 1.5В АА пальчиковой батарейки, расположенной на задней панели счетчика оборотов под пластиковой крышкой. Также имеются разъемы для подключения герконового датчика и дополнительной кнопки «Reset». Обзор счетчика оборотов читайте в этой статье.

Герконовый датчик я прикрутил к алюминиевой стойке с помощью крепежной пластины. Неодимовый магнит закрепил на ручке. Для правильной работы прибора необходимо установить зазор между герконовым датчиком и неодимовым магнитом не более пяти миллиметров. Каждое прохождение неодимового магнита над герконовым датчиком счетчик оборотов считает за один виток.

Как же пользоваться станком для намотки трансформаторов?

И так, знакомый токарь изготовил все детали станка за три часа. Вы своими руками собрали намоточный станок и тщательно смазали все вращающиеся детали, установили счетчик витков. Теперь можно приступать к намотке трансформаторов. Откручиваем винтик М5 на зажимном устройстве, снимаем его и левый зажимной конус. Одеваем каркас трансформатора на вал и одеваем левый конус с зажимным устройством. Плоской отверткой фиксируем винт М5 на зажимном устройстве, далее поджимаем каркас двумя гайками. В этом деле главное не перетянуть, иначе расколите каркас. Включаем счетчик витков и если необходимо сбрасываем показания прибора в ноль.

Зачищаем ножом конец провода от лака и прикручиваем к клейме каркаса от трансформатора. Левой рукой направляем провод, а правой вращаем ручку. После нескольких минут тренировок провод будет ложиться ровными слоями. Каждый слой провода во избежание пробоя изолируем несколькими слоями обыкновенного скотча. Не забывайте наблюдать за показаниями счетчика.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать станок для намотки трансформаторов своими руками.

Самодельный ЧПУ станок

Разделы сайта

  • Самодельный ЧПУ станок
  • 3D принтер
  • Чертежи 3D принтеров
  • Чертежи ЧПУ станков
  • 3D модели
  • Механика
  • Электроника
  • Книги по ЧПУ
  • Софт для ЧПУ станка
  • Обзоры
  • Видео
  • Лазерные граверы

Интересное предложение

Лучшее

  • Домашний 3D принтер
  • Простой контроллер для ЧПУ станка
  • Самодельный ЧПУ станок моделиста
  • Чертеж самодельного ЧПУ станка
  • Самодельный ЧПУ станок из МДФ

Статистика

Самодельный намоточный станок из старого принтера

Сегодняшний разговор пойдет о намоточных станках. Такие станки промышленного изготовления стоят дорого, от нескольких десятков тысяч рублей до 150 тысяч вечнодеревянных денежных знаков нашей страны.
Но, если вы не боитесь взять в руки отвертку, паяльник и молоток, то подобный компьютеризированный станок можно изготовить своими руками.

Для начала рассмотрим теоретическую часть построения намоточных станков с приводом от шагового двигателя и компьютерным управлением.

Как и во всех остальных самодельных ЧПУ станках основная задача состоит в том, что бы изготовить механику, точнее механическую часть станка. Электроника не сильно сложна, ее можно сделать самостоятельно, например по статье Простая электроника для ЧПУ станка или приобрести готовую — например взять контроллер от фирмы purelogic.ru .

Итак, описание намоточного станка

Достаточно подробное описание конструкции намоточного станка часто можно найти в старых журналах, например мне попадалось схема самодельного станка для намотки тороидальных трансформаторов в журнале Радио семидесятых годов.

Основа намоточного станка это прижимной механизм и подача намотки. Прижимной механизм состоит из двух пластин (изготавливается из текстолита или стали, можно использовать и дюралюминий). На одной пластине установлено два ролика с промежутком для третьего прижимного ролика. Вторая пластина подвижна и на ней закреплен прижимной ролик.

Укладочный механизм собран из мебельных направляющих и текстолитовой пластины все приводится по шаговым двигателем на котором установлен винт М8 а в механизме установлен дюралевый уголок с отверстием и резьбой М8.

Общий вид расположения блоков самодельного намоточного станка, по этому виду можно понять — как располагаются детали относительно друг друга.

Самодельный редуктор изготавливается из трех пластиковых шестеренок взятых от принтера. Передаточное отношение на нем 2,5 : 1.

На выходном вале редуктора нарезается резьба М6 для соединения через сгонную муфту с валом на котором закрепляется каркас катушки. Крепление каркаса делается при помощи подручных средств, например подходящих шайб и гаек М6.

Для практического изготовления можно использовать старый матричный принтер, например Epson LQ 100

Переделка данного принтера в самодельный намоточный станок, причем даже с сохранением изначальной компоновки заключается в следующем:
— сдвигается направляющая для каретки в сторону от печатного валика,
— заменяется обрезиненный валик на съемный вал с элементами крепления каркасов,
— устанавливается на каретку самодельный укладчик провода,
— изменяется схема управления шаговым двигателем, для этого достаточно поставить только контроллер, который подключается к ключевым транзисторам или напрямую микросхеме драйвера шагового двигателя принтера.

Как вариант для изготовления самодельного намоточного станка, в качестве шасси (то на чем закреплен сам станок) можно использовать блок питания от телевизора или персонального компьютера.

Кстати, для того, что бы не путаться в подсчете количества намотанных витков, например при отключении электроэнергии, можно поставить на самодельный намоточный станок механический счетчик или, как вариант, можно использовать геркон или оптронную пару заведенную на параллельный порт компьютера. В данном случае на ПК необходимо установить бесперебойный блок питания.