Зарядно разрядное устройство для аккумуляторов своими руками

Разрядное устройство на ОУ с автоматическим отключением АКБ

В интернете немало перечитал статей про примитивные разрядные устройства, где в качестве нагрузки используются переключатели и наборы ламп разной мощности, где необходимо следить за напряжением разряжаемого АКБ. Меня это очень сильно не устроило и захотелось собрать что то свое. Схема должна регулировать нагрузку 0-5А и автоматически отключаться при напряжении АКБ 10.8В

На вооружении был регулятор мощности на ШИМ, но почему то больше хотелось проверенные операционики, работающие в устройстве защиты аккумулятора от глубокого разряда. Осталось только привинтить регулятор тока:-)

Источник опорного напряжения 2.5В собран на TL431. 2.5В потому что сэкономил резистор в делителе управляющей ноги TL431
На 1-ом ОУ собрана схема управления автоматическим отключением при падении напряжения до 10,8В.
Простенький регулятор тока собранный на 2-ом ОУ, на выходе стоит мощный полевой транзистор IRFZ44 управляющий мощной нагрузкой до 5А. Ток нагрузки выставляется потенциометром R9

Настройка разрядного устройства
Настройка минимальна. Временно вместо АКБ подключаем блок питания 10,8В и закорачиваем контакты S1. С помощью R2 ловим момент когда реле отключается и убираем перемычку S1
Максимальный ток можно изменить резистором R11. R11=0.25В/Iнаг, где Iнаг максимальный ток в Амперах. Если планируется нагрузка >5А, можно запараллелить управляющие транзисторы как показано на схеме

Как работает схема разрядного устройства
Подключаем разряжаемый АКБ
Ток с помощью R9 выставляем на ноль, для того что бы уменьшить искрение контактов на реле S1 во время подключения нагрузки
Нажимаем кнопку Пуск и выставляем желаемый ток нагрузки. Когда напряжение упадет до 10,8В, реле разомкнет контакты. Если надо аварийное отключение разрядки, нажимаем кнопку Стоп

Если реле взять двух позиционное, то схему можно включить в зарядное устройство, что еще немного автоматизирует процес заряда-разряда. Рассмотрим на схеме включение

Вы подключили АКБ к клемам и сразу пошла зарядка, но если нажать на кнопку «Пуск» реле переключит с зарядки на разрядку, а когда АКБ окончательно разрядится, схема обратно подключит АКБ к зарядке и полностью зарядит его

На примере в схеме установлена лампа 80Вт 12В. Если изменить обвязку как на схеме, то вместо лампы можно включать практически любую нагрузку, что превращает разрядное устройство в Регулятор тока с автоматическим отключением нагрузки

Регулятор тока с автоматическим отключением АКБ

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Вот такое полезное универсальное устройство я придумал.
Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Admin-чек

Схема зарядно разрядного устройства для автомобильного аккумулятора

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I – средний зарядный ток, А., а Q – паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 – Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 – VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Читайте также  Чертежи и размеры стола для фрезера

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Возможно это не идеальная навороченная зарядка, имеющая кучу настраиваемых автоматических режимов для работы со свинцовыми 12В АКБ, но она уже несколько лет прекрасно выполняет свою работу, а главное — обошлась в сущие копейки по сравнению с заводскими. Итак, несколько лет назад купил зарядное устройство для свинцово-кислотных аккумуляторов автомобиля за 500 рублей — по дешевке. Параметры зарядного устройства обозначались как 12V 6A. Продавец утверждал, что оно будет не слишком надёжным, и он оказался прав.

Что-ж, сколько заплатишь — столько проедешь, по цене это было понятно. После разборки оказалось, что внутри есть только трансформатор, амперметр и выпрямительный мост. Теперь понятно, почему цена была такой низкой. Пришлось на основе этой металлической коробки и прочей мелочи делать своё, самодельное зарядное, принципиальная схема которого уже давно ждала своего часа. Тем более в наличии были все радиоэлементы.

Схема самодельного автомобильного ЗУ

Рисунок печатной платы автозарядки

Схему ЗУ собрал, настроил — и оно заработало. Не закрывая корпус, проверил его в боевых условиях, то есть с автомобильной батареей. Все было в порядке. При работе с полным током 6 А, зарядное устройство слегка нагревается через несколько часов, поэтому вряд ли получится перегреть его.

Она обеспечивает импульсную зарядку АКБ, где силовой ключ — транзистор BUZ11. Подходит для зарядки аккумуляторов от 10 до 200 А/ч.

Работа зарядного и настройка схемы

Сама схема не имеет ограничителя тока зарядки. Можно сделать это резистором или самим не слишком мощным трансформатором. Зато имеется система управления напряжением и защита от обратного подключения батареи, которая сигнализируется буззером. Схема также защищена от замыкания выходных клемм.

Запуск и регулирование ЗУ сводятся к установлению окончательного зарядного напряжения, которое, согласно рекомендациям производителей аккумуляторов, должно быть 14 … 15 В.

После регулировки и проверки схема была установлена ​​в корпус. Прошло уже немало лет, но сегодня она по прежнему работает без проблем. Зарядное не очень часто используется, но иногда полностью зарядить АКБ будет полезно.

Ориентировочные затраты на сборку с нуля

  • Сетевой трансформатор — 250р.
  • Выпрямитель для трансформатора — 50р.
  • Печатная плата — 100р.
  • Другие элементы — 100р.

Подчеркиваем — это если покупать абсолютно все детали, а учитывая что у самодельщиков закрома полны, изготовление может вообще стать бесплатным. В любом случае, попробуйте купите готовый качественный зарядный автомат 12V 6A за 500 рублей!

Такой блок питания был создан после того, как сгорел мой лабораторный БП, который прослужил всего пару месяцев. Было решено из подручных средств собрать мощный сетевой ИБП, который при желании можно было использовать в качестве зарядного устройства для автомобильных аккумуляторов.

За основу была взята схема полумостового инвертора на драйвере IR2153. По идее, такой инвертор можно собрать из подручного хлама, почти все основные компоненты можно снять из компьютерного блока питания.

На входе питания собран простой сетевой фильтр, пленочные конденсаторы 0,1мкФ подобраны с рабочим напряжением 400 Вольт до и после дросселя, сам дроссель выпаян из платы компьютерного блока питания. На кольце намотаны две независимые обмотки проводом 0,9мм, количество витков каждой обмотки – 10.

Термистор на входе питания защищает полевые ключи от бросков напряжения во время включения схемы.
Диодный мост – можно взять готовый или же собрать из 4-х выпрямительных диодов с обратным напряжением не менее 400 вольт и током 1,5-3 А, в моем случае использован готовый диодный мост на 600 Вольт 4А.

От емкости электролитов зависит основная мощность, электролиты легко можно найти в любом компьютерном блоке питания. Мощность инвертора с таким раскладом компонентов составляет порядка 200ватт.

Трансформатор тоже был взят готовый, от того же компового блока питания. Поскольку ИБП должен работать в качестве лабораторного БП, то диапазон выходных напряжений должен быть широким. Трансформатор от компьютерного БП позволяет получить 24 Вольт без переделок, чего вполне достаточно для штатных радиолюбительских дел. Увеличить выходное напряжение можно двумя способами – повышением рабочей частоты генератора или же перемоткой импульсного трансформатора.

Ограничительный резистор 47К брать с мощностью 2 ватт, он обеспечивает питание микросхемы, номинал резистора может отклоняться на 10% в ту или иную сторону.
В качестве диодного выпрямителя использована мощная сборка Шоттки, которая в себе содержит два мощных диода по 30А.

После выпрямителя напряжение сглаживается конденсатором 50Вольт 1000мкФ, чего вполне достаточно, но при желании можно увеличить емкость.

Полевые ключи обязательно должны быть высоковольтными, можно использовать ключи типа IRF740/IRF840 и другие.
Хочу также заметить, что мощность такого блока питания можно поднять до 400 ватт, при этом заменяя только электролиты, крайне не советую повышать мощность более 500 ватт.

Какой же блок питания без защиты от КЗ? Изначально думал реализовать защиту в первичной цепи схемы, но это будет уже трудно настраиваемая схема, поскольку у многих возникают проблемы связанные именно с защитой, а поскольку изначально мне захотелось собрать устройство, которое бы могли повторить радиолюбители не имеющие нужного опыта работы с ИИП, то решил отказаться от идеи, этим не портить и не усложнять основную схему.

Сама защита реализована на отдельной плате, состоит из двух транзисторов. Номиналом шунта можно грубо настроить ток срабатывания защиты, номиналом переменника, можно более точно настроить на нужный ток срабатывания.

При КЗ и перегрузке блока питания, загорится индикатор и питание отключается, блок выходит из защиты моментально, при отсутствии кз или перегруза на выходе.

Полевой транзистор практически любой, с током 20-100A, можно использовать ключи типа irfz44, irfz40, irfz24, irfz46, irfz48, irf3205 и другие.
Регулятор мощности – одна из важнейших частей блока питания. За основу взял схему ШИМ регулятора, поскольку такое управление имеет очень много плюсов.

.

ШИМ – регулятор построен на таймере 555 и мощном ключе IRFZ44, напряжение плавно можно регулировать от . до максимального выходного напряжения с трансформатора.

Данный блок справляется с любыми задачами, которые могут возникнуть в радиолюбительской практике – легкий, мощный и компактный, вольт/амперметр будет цифровым, заказан отдельно на интернет магазине, будет установлен на блок в ближайшее время.

ЗАРЯДНО-РАЗРЯДНОЕ УСТРОЙСТВО

В этой статье речь пойдёт о разрядно-зарядном устройстве (РЗУ). Так как у моих детей много радиоуправляемых устройств, в виде разных машин, танка и вертолёта, то соответственно такое же количество простых зарядок к ним. Постоянно приходилось выбирать из кучи ту, которая нужна была на данный момент. Причём разъёмы для подключения аккумулятора у большинства, были одинаковые и различались лишь по напряжению.

Логично, что перепутать их не составляло труда, что и было сделано по неосторожности. Итог — расплавившийся блок зарядки! Это натолкнуло меня на создание данного устройства, выполненного в корпусе неисправной автомагнитолы. Функционально зарядно-разрядное устройство можно разделить на 8 узлов.

Первый узел — блок питания. Так как он промышленного производства, останавливаться особо на его конструкции не будем. Для данной конструкции подойдёт как импульсный, так и обычный сетевой трансформатор с напряжением на вторичных обмотках 12-13 вольт. Главное он должен иметь две вторичные независимые обмотки. Для чего это нужно, будет сказано далее. В моём первом варианте, как я уже говорил, использован импульсный блок питания от старого компьютерного периферийного устройства, с двумя независимыми обмотками. Напряжение на обмотке III (рис. 1) стабилизировано с помощью параллельного стабилизатора и оптопары, управляющей силовым транзистором блока питания. Обмотка IV не стабилизирована, и имеет напряжение 11 вольт.

Второй узел — высокостабильный источник напряжения с питанием параметрического стабилизатора R4, VD1 выходным напряжением от этого же источника. За основу его была взята схема из журнала «Радио» № 1 за 1997г. автора С. Алексеева (зарядные устройство для Ni-Cd аккумуляторов и батарей). Во втором экземпляре такого же устройства, сделанного знакомому, по его просьбе, этот модуль был собран иначе (рис.2), но принцип действия его тот же. С выхода источника, эмиттер VT1 (рис.1), стабилизированное напряжение поступает на делитель, состоящий из R5-R12, и через переключатель SA1 на повторитель напряжения. С точек соединения (1-8) снимается опорное напряжение от 1,4v до 11,2v. На схеме обозначение 1,2v., 2,4v, 3,6v….11,2v, соответствует 1,2,3….8 аккумуляторам. В радиоуправляемых игрушках используются аккумуляторы, состоящие из нескольких одиночных элементов (рис.3). Напряжение заряженного аккумулятора должно быть на 17-20% больше номинального, т.е. 1,4v-1,44v. Для 8 отдельных аккумуляторов номинальное напряжение 9,6v (1,2х8), а 11,2v (1,4х8) соответствует полностью заряженному аккумулятору. Обозначение 1,2v., 2,4v и т.д. на панели управления, указано для удобства пользования, так как на аккумуляторах пишут именно номинальное напряжение.

Читайте также  Циркулярка с рубанком своими руками

Третий узел зарядно-разрядного устройства – точный повторитель напряжения снимаемого с SA1, с большой нагрузочной способностью, который тоже взят из указанной статьи. В его состав входят элементы R13,R14,DA1.2,VT2,C5,C6. Подбором конденсатора С6 устраняют высокочастотную генерацию узла. В первом варианте VT2 КТ972А, во втором КТ817А. Разницы в работе не замечено.

Четвертый узел – стабилизатор тока, собранный на микросхеме DA2.1 и транзисторе VT3. В цепи истока стоит мощный резистор R26 сопротивлением 1ом и мощностью 5Вт, являющийся датчиком тока. Напряжение с него поступает на инвертирующий вход микросхемы DA2.1. Особенностью данного стабилизатора тока является линейная зависимость напряжения на неинвертирующем входе и тока на стоке транзистора, т.е. проще говоря, напряжение равно току. При Uвх=1mV, ток в цепи стока будет 1mA, при Uвх=1V, ток соответственно 1А. Применение транзистора VT3 типа IRF1010N, обусловлено весьма малым сопротивлением открытого канала — 0,01ома. Иные значения тока подбираются резисторами R16-R24. Минимальное значение подбирают резистором R24 в положении «1» SA2, следующее значение тока резистором R23 в положении «2» SA2, и так далее. Если использовать опорное напряжение +1,2V, снятое с точки «Е» (рис.1), то максимальный ток разряда-заряда будет около 1,2А. Но при этом, следует заменить транзистор VT2 более мощным.

Пятый узел – разрядный. Он используется для предварительного разряда аккумулятора. Известно что, если аккумулятор не разряжать до значения 1 вольт на 1 элемент, начинает проявляться так называемый «эффект памяти», соответственно ёмкость аккумулятора со временем уменьшается. Особенно это характерно для NI-Cd аккумуляторов. Узел состоит из компаратора на микросхеме DA2.2, транзистора VT4,реле К1 и кнопки включения режима разрядки SA4, имеющей не фиксированное положение в нажатом состоянии. При кратковременном нажатии на SA4,если напряжение на одном элементе аккумулятора более 1V, включается реле К1 и своими контактами К1.3, подключает узел к шине питания +15V, контакты реле К1.2 подключают (-) аккумулятора к общем минусовому проводу (земле) устройства, а (+) аккумулятора через К1.1 к стоку VT3.Начнётся разрядка. От положения SA2 (ток АКБ), зависит ток разряда. После предварительной разрядки аккумулятора, компаратор наDA2.2 отключает реле, и (-) аккумулятора контактами реле К1.2 подключает к стоку VT3, (+) контактами К1.1 к эмиттеру VT2. Начнётся зарядка тем же током. Нормальным током заряда считается ток 1/10 от ёмкости аккумулятора. При ёмкости аккумулятора 1000mAh, ток заряда-100mA. Работа узла зависит от количества и напряжения аккумуляторов, подключенных к устройству и положения SA1. Напряжение на инвертирующем входе DA2.2 (т. Г), должно быть 1V (подбирается резистором R32) в положении «1» переключателя SA1, и с каждым переключением увеличиваться на 1V. В положении «8» SA1, соответственно 8V.

Шестой узел — стабилизатор образцового напряжения с выходным напряжением +0,5 вольта. Изменить его можно подбором резисторов R28,R29. Он собран на DA3. Опорное напряжение необходимо для работы стабилизатора тока DA2.1, VT3. В первом варианте он выполнен на одном из четырёх ОУ входящих в состав DA2 и транзисторе для поверхностного монтажа. Опорное напряжение такое же и составляет +0,5v. Следует отметить, что этот узел на КР142ЕН22 имеет более простое решение.

Седьмой узел РА1 — это цифровой измеритель тока. В данном варианте использован модуль ЕК3488М фирмы ЕКITS, включенный в режим измерения напряжения до 1V. Напряжение питания модуля по паспорту 6-20V, ток потребления около 0,08А. Измерительный вход ЕК3488М подключен к резистору R26. Напряжение на нём равно току разряда-заряда. Питается модуль, как и всё устройство от обмотки III трансформатора блока питания.

Восьмой узел РА2. В первом варианте РА2 отсутствует, однако с его установкой нет никаких проблем. Второй вариант (для знакомого) имеет РА2. В начале статьи, рассказывая о блоке питания, я сказал о дополнительной независимой вторичной обмотке трансформатора. Она нужна для питания вольтметра на модуле EK-2501, той же фирмы. Измерительный вход модуля всегда подключен к плюсовому выводу разъёма ХР1, к которому подключается аккумулятор, через первую группу контактов SA3,замкнутых при включении устройства. Общий провод модуля подключается к минусовому выводу ХР1. Это схемное решение позволяет контролировать напряжение на аккумуляторе, как во время заряда, так и во время разряда, а минус аккумулятора связан с «землёй» устройства только во время режима разрядки. Если же (-) вольтметра подключить к «земле» устройства, то не будет контролироваться изменение напряжения на аккумуляторе. Вот именно по этой причине и нужна обмотка IV в блоке питания. В принципе можно обойтись без вольтметра и дополнительной обмотки, контролируя лишь ток. Нулевым показаниям миллиамперметра РА1, соответствует полная зарядка аккумулятора. Вторая группа SA3 используется для подключения блока питания к сети. Такое решение принято для исключения разрядки аккумулятора через элементы устройства, при положении SA3 в состоянии выключено, если, к примеру, нет времени разъединять разъёмы аккумулятора и разрядно-зарядного устройства.

Описанное зарядно-разрядное устройство находится в эксплуатации с августа 2009 года, и не разу не подводило. Надеюсь, статья была интересной для вас. Если возникнут, какие вопросы, задавайте на форуме. Всем удачи, с вами был Сергей Крылов. (INVERTOR).

Originally posted 2019-07-14 18:13:11. Republished by Blog Post Promoter

Зарядно-разрядное устройство для разных типов аккумуляторов

Часто возникает ситуация с неадекватным поведением «пальчиковых» аккумуляторов (тип АА, 1,2 вольта), например, используемых в цифровом фотоаппарате. Это выражается в значительном сокращении времени их работы, хотя аккумуляторы при этом могут быть практически новыми. Конечно, причина может быть в плохом качестве самих элементов питания, однако зачастую это может происходить и с экземплярами вполне приличного производителя и, соответственно, качества.

Часто причина кроется в особенностях контроллера питания самого аппарата — он предполагает использование элементов питания большой ёмкости (например, 2300 -2700 мА-ч) и при меньших ёмкостях аккумуляторных батарей воспринимает их как «севшие», выдавая соответствующую информацию на дисплее (значок разряда батареи) и выключая аппарат. Эта же ситуация возможна при некоторой потери ёмкости и вполне мощных элементов питания. Ситуация эта усугубляется ещё и тем, что применяемые обычно «силовые» аккумуляторы типа NiCd или NiMN имеют пресловутый и вредный :-)) эффект «памяти». Из-за преждевременного отключения питания автоматикой аппарата, аккумуляторы не успевают разрядиться до конца и, следовательно, при последующем заряде не могут набрать полную ёмкость. Очень часто продлить жизнь таких аккумуляторов вполне возможно, для чего перед очередной зарядкой их следует просто разрядить до конца.

Предел допустимого разряда для NiCd, NiMN элементов обычно указан в справочной литературе на уровне 0,9-1 вольт, однако в некоторых источниках есть информация о возможном уровне разряда до 0,4 вольт. Ниже будут приведены схемы довольно простых устройств для автоматического заряда и разряда аккумуляторов, доступных для повторения даже начинающими радиолюбителями.

При помощи такого зарядного устройства (ЗУ) можно заряжать аккумуляторы разных типов, с номинальным напряжением 1,2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3,9…4,5 В), а также 9 и 12 – вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Принцип работы

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 его номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи небольшого стрелочного прибора.

Принципиальная схема ЗУ приведена на рис.1.

Переменное сопротивление Р1 является своеобразным «датчиком тока» и, изменяя его сопротивление, можно задавать первоначальный максимальный зарядный ток. Поскольку ток в процессе зарядки уменьшается, то его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более 0,3СА (СА – емкость аккумулятора в Ач).

Конструкция и детали

Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме — не ниже 36 В. Диоды выпрямительного моста – любые выпрямительные, на ток от 0,5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – типа КТ815, КТ817, КТ805 c любой буквой или импортные аналоги (например — PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1,5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие теплоотводы. Светодиод может быть любой маломощный, например типа АЛ307. Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КРЕН12А (цоколевка выводов указана на схеме в скобках). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах – от 1,45 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1,2В – 2,4В – 3,6В – 3,9В – 9В – 12В. Нужные значения напряжений устанавливаются при настройке, подбором резисторов R9 … R14, номиналы их лежат в пределах от десятков Ом до нескольких кОм.

Читайте также  Как сделать евровагонку своими руками

Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного или цифрового микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором).

Настройка

Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное. Иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1,2В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае выставляем на выходе около 1,4В. Затем переключаем S1 в следующее положение(например «2,4В») и подбором резистора R10 выставляем на выходе около 2,8В. И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1.

После установки всех необходимых значений выходного напряжения, следует откалибровать стрелочный прибор – микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам – переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его сопротивление, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например – 300 мА). Вместо переменного проволочного, можно использовать наборы постоянных сопротивлений. После чего подбираем шунт – сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис.3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0,5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Работа с ЗУ

При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора – когда она будет на «нуле» (то есть в начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго – перезаряда его не произойдет

Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутреннее сопротивления каждого из них хоть незначительно, но отличается от остальных, а это может привести к перезаряду или недозаряду отдельных элементов «батареи». Например, для зарядки 4-х «пальчиковых» аккумуляторов лучше сделать 4 модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

Внешний вид зарядного устройства с органами управления показан на рисунке:

Разрядное устройство для Hi-MH аккумуляторов

Ni-MH элементы рекламируются как элементы с высокой энергоемкостью, не имеющие «памяти». Однако, несмотря на заверения производителей, Ni-MH элементы все же обладают «памятью». Для предотвращения уменьшения емкости аккумуляторов перед зарядкой их следует разряжать.

В настоящее время для питания портативной фото-, видео-, аудиоаппаратуры широко используются Ni-MH аккумуляторы (АК). Для их зарядки есть широкий ассортимент зарядных устройств. Существуют интеллектуальные зарядные устройства, которые осуществляют контроль зарядки каждого элемента отдельно, а также имеют функцию разряда с последующим зарядом.

Однако большинство простых зарядных устройств имеют, в лучшем случае, «таймер безопасности», отключающий зарядку по истечении предполагаемого времени зарядки данного элемента, и не имеют функции разряда. Производители таких устройств рекомендуют перед установкой элементов на зарядку во избежание перезаряда (ведь неизвестна остаточная емкость аккумулятора) предварительно их разрядить. Каким способом – производитель оставляет на усмотрение потребителя.

Устройства, в которых применяются аккумуляторы, при достижении минимального для данного устройства напряжения требуют их замены, хотя аккумуляторы разряжены не полностью. Поэтому, если аккумулятор не разряжать перед зарядкой, в таких устройствах трудно судить об окончании заряда, к тому же каждый раз будет происходить «до- заряд» аккумуляторов, в результате чего происходит постепенная потеря емкости.

Можно разряжать аккумуляторы самостоятельно, например, подключив в качестве нагрузки лампочку, однако разряжать аккумулятор ниже 1 В не рекомендуется, а это трудно определить при таком способе. Предлагаемое устройство позволяет «доразряжать» такие элементы до напряжения 1 В с последующим отключением и индикацией окончания функции разрядки. Устройство установлено в ЗУ типа Sony BCG-34HW (см. фото в начале статьи), хотя, в принципе, его можно установить в любом другом устройстве, либо выполнить как отдельную конструкцию.

Контроль напряжения и функция разряда для каждого элемента используются раздельно. Работа устройства (рис.1) основана на использовании порогового устройства, выполненного на триггере Шмитта.

При подключении аккумулятора с напряжением 1 .2 В и более логический уровень на входах 1 и 2 DD1.1 остается высоким, на выходе 4 DD1.2 уровень также высокий, через резистор R6 открыт транзистор VT1. Напряжение с эмиттера VT1 открывает VT2, и аккумулятор разряжается через резистор R10. Светодиод VD1 светится, индицируя режим разряда.

При достижении напряжения на аккумуляторе около 1 В триггер Шмитта переключается, транзисторы VT1 и VT2 закрываются, светодиод VD1 гаснет, и резистор нагрузки R10 отключается от аккумулятора GB1. Аналогично процесс происходит и с другим аккумулятором GB2.
Тумблер SA1 позволяет менять режим работы устройства, выбирая функцию либо заряда, либо разряда. Заряд происходит в штатном режиме работы ЗУ типа Sony BCG-34HW.

Так как при переключении в режим разряда питание таймера устройства отключено, для надежного запирания транзисторов ключей VT штатной схемы, оставшихся без управления, установлены дополнительные резисторы R7 и R14 (на рис.1 выделены жирным). Конденсаторы С1 и С2 улучшают стабильность работы устройства. Ток разряда определяется резисторами R10 и R11, при данных номиналах около 300 мА. Транзисторы VT2, VT3 типа КТ961В выбраны из-за небольшого напряжения насыщения коллектор-эмиттер в открытом состоянии.

Конструкция и детали

В качестве VT1 и VT4 можно использовать любые транзисторы структуры п-р-п. Устройство собран на печатной плате размерами 25×20 мм. Резисторы R1-R4 и R17-R20, а также R10 и R11 установлены на свободном месте основной платы зарядного устройства (рис.2). В выступающих направляющих корпуса сделаны вырезы, в которых закрепляют плату. На передней стенке корпуса просверливают отверстия для светодиодов VD1 и VD2, в верхней части располагают микротумблер SA1. Разводка печатной платы и размещение деталей на ней показаны на рис.3.

Настройка устройства

Она заключается в установке порога срабатывания триггеров резисторами R2 и R19. Для этого необходимо установить движки резисторов R2 и R19 в верхнее по схеме положение, затем подключить предварительно разряженный любым способом до напряжения 1 В аккумулятор и, медленно вращая движки резисторов, добиться погасания светодиодов.

Кратковременно переключают устройство в режим зарядки, подзаряжают аккумулятор до напряжения 1.2 В, затем переключают тумблер в режим разрядки и, измеряя напряжение на аккумуляторе, убеждаются, что разряд отключается при напряжении 1 В.

Настройку, производят для каждого канала отдельно. Так как ИМС К561ЛА7 имеют разброс напряжения входного логического уровня, возможно, потребуется подбор резисторов R1, R3 и R18, R20. В авторском варианте при повторении на нескольких микросхемах К561ЛА7 номиналы резисторов были такие, как указанно на рис.1.